How to connect to data on a filesystem using Pandas
This guide will help you connect to your data stored on a filesystem using pandas. This will allow you to ValidateThe act of applying an Expectation Suite to a Batch. and explore your data.
Prerequisites: This how-to guide assumes you have:
- Completed the Getting Started Tutorial
- A working installation of Great Expectations
- Have access to data on a filesystem
Steps
1. Choose how to run the code in this guide
Get an environment to run the code in this guide. Please choose an option below.
- CLI + filesystem
- No CLI + filesystem
- No CLI + no filesystem
If you use the Great Expectations CLICommand Line Interface, run this command to automatically generate a pre-configured Jupyter Notebook. Then you can follow along in the YAML-based workflow below:
great_expectations datasource new
If you use Great Expectations in an environment that has filesystem access, and prefer not to use the CLICommand Line Interface, run the code in this guide in a notebook or other Python script.
If you use Great Expectations in an environment that has no filesystem (such as Databricks or AWS EMR), run the code in this guide in that system's preferred way.
2. Instantiate your project's DataContext
Import these necessary packages and modules.
from ruamel import yaml
import great_expectations as gx
from great_expectations.core.batch import BatchRequest, RuntimeBatchRequest
Load your
Data ContextThe primary entry point for a Great Expectations
deployment, with configurations and methods for
all supporting components.
into memory using the
get_context()
method.
context = gx.get_context()
3. Configure your Datasource
Using this example configuration add in the path to a directory that contains some of your data:
- YAML
- Python
datasource_yaml = f"""
name: taxi_datasource
class_name: Datasource
module_name: great_expectations.datasource
execution_engine:
module_name: great_expectations.execution_engine
class_name: PandasExecutionEngine
data_connectors:
default_runtime_data_connector_name:
class_name: RuntimeDataConnector
batch_identifiers:
- default_identifier_name
default_inferred_data_connector_name:
class_name: InferredAssetFilesystemDataConnector
base_directory: <path_to_your_data_here>
default_regex:
group_names:
- data_asset_name
pattern: (.*)
"""
Run this code to test your configuration.
context.test_yaml_config(datasource_yaml)
datasource_config = {
"name": "taxi_datasource",
"class_name": "Datasource",
"module_name": "great_expectations.datasource",
"execution_engine": {
"module_name": "great_expectations.execution_engine",
"class_name": "PandasExecutionEngine",
},
"data_connectors": {
"default_runtime_data_connector_name": {
"class_name": "RuntimeDataConnector",
"module_name": "great_expectations.datasource.data_connector",
"batch_identifiers": ["default_identifier_name"],
},
"default_inferred_data_connector_name": {
"class_name": "InferredAssetFilesystemDataConnector",
"base_directory": "<path_to_your_data_here>",
"default_regex": {"group_names": ["data_asset_name"], "pattern": "(.*)"},
},
},
}
Run this code to test your configuration.
context.test_yaml_config(yaml.dump(datasource_config))
If you specified a directory containing CSV files you
will see them listed as
Available data_asset_names
in the output
of test_yaml_config()
.
Feel free to adjust your configuration and re-run
test_yaml_config()
as needed.
4. Save the Datasource configuration to your DataContext
Save the configuration into your
DataContext
by using the
add_datasource()
function.
- YAML
- Python
context.add_datasource(**yaml.load(datasource_yaml))
context.add_datasource(**datasource_config)
5. Test your new Datasource
Verify your new DatasourceProvides a standard API for accessing and interacting with data from a wide variety of source systems. by loading data from it into a ValidatorUsed to run an Expectation Suite against data. using a Batch RequestProvided to a Datasource in order to create a Batch..
- Specify a path to single CSV
- Specify a data_asset_name
Add the path to your CSV in the
path
key under
runtime_parameters
in your
BatchRequest
.
batch_request = RuntimeBatchRequest(
datasource_name="version-0.15.50 taxi_datasource",
data_connector_name="version-0.15.50 default_runtime_data_connector_name",
data_asset_name="version-0.15.50 <your_meaningful_name>", # This can be anything that identifies this data_asset for you
runtime_parameters={"path": "<path_to_your_data_here>"}, # Add your path here.
batch_identifiers={"default_identifier_name": "default_identifier"},
)
Then load data into the Validator
.
context.add_or_update_expectation_suite(expectation_suite_name="version-0.15.50 test_suite")
validator = context.get_validator(
batch_request=batch_request, expectation_suite_name="version-0.15.50 test_suite"
)
print(validator.head())
Add the name of the
Data AssetA collection of records within a Datasource
which is usually named based on the
underlying data system and sliced to
correspond to a desired specification.
to the data_asset_name
in your
BatchRequest
.
batch_request = BatchRequest(
datasource_name="version-0.15.50 taxi_datasource",
data_connector_name="version-0.15.50 default_inferred_data_connector_name",
data_asset_name="version-0.15.50 <your_data_asset_name>",
)
Then load data into the Validator
.
context.add_or_update_expectation_suite(expectation_suite_name="version-0.15.50 test_suite")
validator = context.get_validator(
batch_request=batch_request, expectation_suite_name="version-0.15.50 test_suite"
)
print(validator.head())
🚀🚀 Congratulations! 🚀🚀 You successfully connected Great Expectations with your data.
Additional Notes
To view the full scripts used in this page, see them on GitHub:
Next Steps
Now that you've connected to your data, you'll want to work on these core skills: