Skip to main content
Version: 0.17.23

Edit an existing Expectation Suite

Use the information provided here to learn how to edit an Expectation Suite. Editing Expectations does not edit or alter the Batch data.

All the code used in the examples is available in GitHub at this location: how_to_edit_an_expectation_suite.py.

Prerequisites

  • A working installation of Great Expectations
  • A Filesystem Data Context for your Expectations
  • A Data Source from which to request a Batch of data for introspection
  • An Expectation Suite

Import the Great Expectations module and instantiate a Data Context

Run the following code to create a new Data Context with the get_context() method:

import great_expectations as gx

context = gx.get_context()

Create a Validator from Data

Run the following code to connect to .csv data stored in the great_expectations GitHub repository:

validator = context.sources.pandas_default.read_csv(
"https://raw.githubusercontent.com/great-expectations/gx_tutorials/main/data/yellow_tripdata_sample_2019-01.csv"
)

Retrieve an existing Expectation Suite

Run the following code to retrieve an Expectation Suite:

my suite = context.get_expectation_suite("expectation_suite_name")

Replace expectation_suite_name with the name of your Expectation Suite.

View the Expectations in the Expectation Suite

Run the following code to print the Suite to console or Jupyter Notebook the show_expectations_by_expectation_type() method:

my_suite.show_expectations_by_expectation_type()

The output appears similar to the following example:

    [ { 'expect_column_values_to_be_between': { 'auto': True,
'column': 'passenger_count',
'domain': 'column',
'max_value': 6,
'min_value': 1,
'mostly': 1.0,
'strict_max': False,
'strict_min': False}},
{ 'expect_column_values_to_not_be_null': { 'column': 'pickup_datetime',
'domain': 'column'}}]

Instantiate ExpectationConfiguration

From the Expectation Suite, you can create an ExpectationConfiguration object using the output from `show_expectations_by_expectation_type(). The following is the example output from the first Expectation in the Expectation Suite.

It runs the expect_column_values_to_be_between Expectation on the passenger_count column and expects the min and max values to be 1 and 6 respectively.

{
"expect_column_values_to_be_between": {
"auto": True,
"column": "passenger_count",
"domain": "column",
"max_value": 6,
"min_value": 1,
"mostly": 1.0,
"strict_max": False,
"strict_min": False,
}
}

The following is the same configuration with an ExpectationConfiguration object:

from great_expectations.core.expectation_suite import ExpectationConfiguration
config = ExpectationConfiguration(
expectation_type="expect_column_values_to_be_between",
kwargs={
"auto": True,
"column": "passenger_count",
"domain": "column",
"max_value": 6,
"min_value": 1,
"mostly": 1.0,
"strict_max": False,
"strict_min": False,
},
)

Update the Configuration and Expectation Suite

In the following example, the max_value of the Expectation is adjusted from 4 to 6 with a new ExpectationConfiguration:

updated_config = ExpectationConfiguration(
expectation_type="expect_column_values_to_be_between",
kwargs={
"auto": True,
"column": "passenger_count",
"domain": "column",
"min_value": 1,
"max_value": 4,
#'max_value': 6,
"mostly": 1.0,
"strict_max": False,
"strict_min": False,
},
)

To update the Expectation Suite you use the add_expectation() function. For example:

my_suite.add_expectation(updated_config)

The add_expectation() function performs an 'upsert' into the ExpectationSuite and updates the existing Expectation, or adds a new one if it doesn't.

To check that the Expectation Suite has been updated, you can run the show_expectations_by_expectation_type() function again, or run find_expectation() and then confirm that the expected Expectation exists in the suite. For example:

config_to_search = ExpectationConfiguration(
expectation_type="expect_column_values_to_be_between",
kwargs={"column": "passenger_count"},
)
found_expectation = my_suite.find_expectations(config_to_search, match_type="domain")

# This assertion will succeed because the ExpectationConfiguration has been updated.
assert found_expectation == [updated_config]

You'll need to perform the search with a new ExpectationConfiguration, but you don't need to include all the kwarg values.

Remove the ExpectationConfiguration (Optional)

To remove an ExpectationConfiguration, you can use the remove_configuration() function. Similar to find_expectation(), you call the remove_configuration() function with ExpectationConfiguration. For example:

config_to_remove = ExpectationConfiguration(
expectation_type="expect_column_values_to_be_between",
kwargs={"column": "passenger_count"},
)
my_suite.remove_expectation(
config_to_remove, match_type="domain", remove_multiple_matches=False
)

found_expectation = my_suite.find_expectations(config_to_remove, match_type="domain")

# This assertion will fail because the ExpectationConfiguration has been removed.
assert found_expectation != [updated_config]
my_suite.show_expectations_by_expectation_type()

The output of show_expectations_by_expectation_type() should appear similar to this example:

[ 
{ 'expect_column_values_to_not_be_null': { 'column': 'pickup_datetime',
'domain': 'column'}}]

Save Expectation Suite changes

After editing an Expectation Suite, you can use the save_suite() function to save it to your Data Context. For example:

context.save_expectation_suite(my_suite)

To make sure your Expectation Suite changes are reflected in the Validator, use context.get_validator() to overwrite the validator, or create a new one from the updated Data Context.