Standard arguments for Expectations
All Expectations return a JSON-serializable dictionary when evaluated, and share four standard (optional) arguments:
- result_format: Controls what information is returned from the evaluation of the Expectation.
- include_config: If true, then the Expectation Suite itself is returned as part of the result object.
- catch_exceptions: If true, execution will not fail if the Expectation encounters an error. Instead, it will return success = False and provide an informative error message.
- meta: Allows user-supplied meta-data to be stored with an Expectation.
All ColumnMapExpectations
also have the
following argument:
-
mostly: A special argument
that allows for fuzzy validation based on
some percentage (available for all
column_map_expectations
)
result_format
See Result format for more information.
include_config
All Expectations accept a boolean
include_config
parameter. If true, then
the Expectation Suite itself is returned as part of
the result object
expect_column_values_to_be_in_set(
"my_var",
['B', 'C', 'D', 'F', 'G', 'H'],
result_format="COMPLETE",
include_config=True,
)
# This returns:
{
'exception_index_list': [0, 10, 11, 12, 13, 14],
'exception_list': ['A', 'E', 'E', 'E', 'E', 'E'],
'expectation_type': 'expect_column_values_to_be_in_set',
'expectation_kwargs': {
'column': 'my_var',
'result_format': 'COMPLETE',
'value_set': ['B', 'C', 'D', 'F', 'G', 'H']
},
'success': False
}
catch_exceptions
All Expectations accept a boolean
catch_exceptions
parameter. If this
parameter is set to True, then Great Expectations will
intercept any exceptions so that execution will not
fail if the Expectation encounters an error. Instead,
if Great Excpectations catches an exception while
evaluating an Expectation, the Expectation result will
( in BASIC
and
SUMMARY
modes) return the following
informative error message:
{
"result": False,
"catch_exceptions": True,
"exception_traceback": "..."
}
catch_exceptions
is on by default in
command-line validation mode, and off by default in
exploration mode.
meta
All Expectations accept an optional
meta
parameter. If meta
is a
valid JSON-serializable dictionary, it will be \
passed through to the
expectation_result
object without
modification. The meta
parameter can be
used to add \ helpful markdown annotations to
Expectations (shown below). These Expectation
"notes" are rendered within \ Expectation
Suite pages in Data Docs.
my_df.expect_column_values_to_be_in_set(
"my_column",
["a", "b", "c"],
meta={
"notes": {
"format": "markdown",
"content": [
"#### These are expectation notes \n - you can use markdown \n - or just strings"
]
}
}
)
# This returns:
{
"success": False,
"meta": {
"notes": {
"format": "markdown",
"content": [
"#### These are expectation notes \n - you can use markdown \n - or just strings"
]
}
}
}
mostly
mostly
is a special argument that is
automatically available in all
column_map_expectations
.
mostly
must be a float between 0 and 1.
Great Expectations evaluates it as a percentage,
allowing some wiggle room when evaluating
Expectations: as long as mostly
percent
of rows evaluate to True
, the Expectation
returns "success": True
.
[0,1,2,3,4,5,6,7,8,9]
my_df.expect_column_values_to_be_between(
"my_column",
min_value=0,
max_value=7
)
# This returns:
{
"success": False,
...
}
my_df.expect_column_values_to_be_between(
"my_column",
min_value=0,
max_value=7,
mostly=0.7
)
# This returns:
{
"success": True,
...
}
Expectations with mostly
return exception
lists even if they succeed:
my_df.expect_column_values_to_be_between(
"my_column",
min_value=0,
max_value=7,
mostly=0.7
)
# This returns:
{
"success": true
"result": {
"unexpected_percent": 0.2,
"partial_unexpected_index_list": [
8,
9
],
"partial_unexpected_list": [
8,
9
],
"unexpected_percent_nonmissing": 0.2,
"unexpected_count": 2
}
}
Dataset defaults
This default behavior for result_format
,
include_config
,
catch_exceptions
can be overridden at the
Dataset level:
my_dataset.set_default_expectation_argument("result_format", "SUMMARY")
In validation mode, they can be overridden using flags:
great_expectations validation csv my_dataset.csv my_expectations.json \
--result_format=BOOLEAN_ONLY --catch_exceptions=False --include_config=True