How to instantiate a Data Context without a yml file
This guide will help you instantiate a Data ContextThe primary entry point for a Great Expectations deployment, with configurations and methods for all supporting components. without a yml file, aka configure a Data Context in code. If you are working in an environment without easy access to a local filesystem (e.g. AWS Spark EMR, Databricks, etc.) you may wish to configure your Data Context in code, within your notebook or workflow tool (e.g. Airflow DAG node).
Prerequisites: This how-to guide assumes you have:
- Completed the Getting Started Tutorial
- A working installation of Great Expectations
Steps
1. Create a DataContextConfig
The DataContextConfig
holds all of the
associated configuration parameters to build a Data
Context. There are defaults set for you to minimize
configuration in typical cases, but please note that
every parameter is configurable and all defaults are
overridable. Also note that
DatasourceConfig
also has defaults which
can be overridden.
Here we will show a few examples of common
configurations, using the
store_backend_defaults
parameter. Note
that you can use the existing API without defaults by
omitting that parameter, and you can override all of
the parameters as shown in the last example. A
parameter set in DataContextConfig
will
override a parameter set in
store_backend_defaults
if both are used.
The following store_backend_defaults
are
currently available:
S3StoreBackendDefaults
GCSStoreBackendDefaults
DatabaseStoreBackendDefaults
FilesystemStoreBackendDefaults
The following example shows a Data Context configuration with an SQLAlchemy DatasourceProvides a standard API for accessing and interacting with data from a wide variety of source systems. and an AWS S3 bucket for all metadata StoresA connector to store and retrieve information about metadata in Great Expectations., using default prefixes. Note that you can still substitute environment variables as in the YAML based configuration to keep sensitive credentials out of your code.
from great_expectations.data_context.types.base import DataContextConfig, DatasourceConfig, S3StoreBackendDefaults
data_context_config = DataContextConfig(
datasources={
"sql_warehouse": DatasourceConfig(
class_name="version-0.15.50 Datasource",
execution_engine={
"class_name": "SqlAlchemyExecutionEngine",
"credentials": {
"drivername": "postgresql+psycopg2",
"host": "localhost",
"port": "5432",
"username": "postgres",
"password": "postgres",
"database": "postgres",
},
},
data_connectors={
"default_runtime_data_connector_name": {
"class_name": "RuntimeDataConnector",
"batch_identifiers": ["default_identifier_name"],
},
"default_inferred_data_connector_name": {
"class_name": "InferredAssetSqlDataConnector",
"name": "whole_table",
},
}
)
},
store_backend_defaults=S3StoreBackendDefaults(default_bucket_name="version-0.15.50 my_default_bucket"),
)
The following example shows a Data Context configuration with a Pandas datasource and local filesystem defaults for metadata stores. Note: imports are omitted in the following examples. Note: You may add an optional root_directory parameter to set the base location for the Store Backends.
from great_expectations.data_context.types.base import DataContextConfig, DatasourceConfig, FilesystemStoreBackendDefaults
data_context_config = DataContextConfig(
datasources={
"pandas": DatasourceConfig(
class_name="version-0.15.50 Datasource",
execution_engine={
"class_name": "PandasExecutionEngine"
},
data_connectors={
"tripdata_monthly_configured": {
"class_name": "ConfiguredAssetFilesystemDataConnector",
"base_directory": "/path/to/trip_data",
"assets": {
"yellow": {
"pattern": r"yellow_tripdata_(\d{4})-(\d{2})\.csv$",
"group_names": ["year", "month"],
}
},
}
},
)
},
store_backend_defaults=FilesystemStoreBackendDefaults(root_directory="/path/to/store/location"),
)
The following example shows a Data Context
configuration with an SQLAlchemy datasource and two
GCS buckets for metadata Stores, using some custom and
some default prefixes. Note that you can still
substitute environment variables as in the YAML based
configuration to keep sensitive credentials out of
your code. default_bucket_name
,
default_project_name
sets the default
value for all stores that are not specified
individually.
The resulting DataContextConfig
from the
following example creates an
Expectations StoreA connector to store and retrieve information
about collections of verifiable assertions about
data.
and
Data DocsHuman readable documentation generated from Great
Expectations metadata detailing Expectations,
Validation Results, etc.
using the my_default_bucket
and
my_default_project
parameters since their
bucket and project is not specified explicitly. The
Validation Results StoreA connector to store and retrieve information
about objects generated when data is Validated
against an Expectation Suite.
is created using the explicitly specified
my_validations_bucket
and
my_validations_project
. Further, the
prefixes are set for the Expectations Store and
Validation Results Store, while Data Docs use the
default data_docs
prefix.
data_context_config = DataContextConfig(
datasources={
"sql_warehouse": DatasourceConfig(
class_name="version-0.15.50 Datasource",
execution_engine={
"class_name": "SqlAlchemyExecutionEngine",
"credentials": {
"drivername": "postgresql+psycopg2",
"host": "localhost",
"port": "5432",
"username": "postgres",
"password": "postgres",
"database": "postgres",
},
},
data_connectors={
"default_runtime_data_connector_name": {
"class_name": "RuntimeDataConnector",
"batch_identifiers": ["default_identifier_name"],
},
"default_inferred_data_connector_name": {
"class_name": "InferredAssetSqlDataConnector",
"name": "whole_table",
},
}
)
},
store_backend_defaults=GCSStoreBackendDefaults(
default_bucket_name="version-0.15.50 my_default_bucket",
default_project_name="version-0.15.50 my_default_project",
validations_store_bucket_name="version-0.15.50 my_validations_bucket",
validations_store_project_name="version-0.15.50 my_validations_project",
validations_store_prefix="my_validations_store_prefix",
expectations_store_prefix="my_expectations_store_prefix",
),
)
The following example sets overrides for many of the
parameters available to you when creating a
DataContextConfig
and a Datasource.
data_context_config = DataContextConfig(
config_version=2,
plugins_directory=None,
config_variables_file_path=None,
datasources={
"my_spark_datasource": DatasourceConfig(
class_name="version-0.15.50 Datasource",
execution_engine={
"class_name": "SparkDFExecutionEngine"
},
data_connectors={
"tripdata_monthly_configured": {
"class_name": "ConfiguredAssetFilesystemDataConnector",
"base_directory": "/path/to/trip_data",
"assets": {
"yellow": {
"pattern": r"yellow_tripdata_(\d{4})-(\d{2})\.csv$",
"group_names": ["year", "month"],
}
},
}
},
)
},
stores={
"expectations_S3_store": {
"class_name": "ExpectationsStore",
"store_backend": {
"class_name": "TupleS3StoreBackend",
"bucket": "my_expectations_store_bucket",
"prefix": "my_expectations_store_prefix",
},
},
"validations_S3_store": {
"class_name": "ValidationsStore",
"store_backend": {
"class_name": "TupleS3StoreBackend",
"bucket": "my_validations_store_bucket",
"prefix": "my_validations_store_prefix",
},
},
"evaluation_parameter_store": {"class_name": "EvaluationParameterStore"},
},
expectations_store_name="version-0.15.50 expectations_S3_store",
validations_store_name="version-0.15.50 validations_S3_store",
evaluation_parameter_store_name="version-0.15.50 evaluation_parameter_store",
data_docs_sites={
"s3_site": {
"class_name": "SiteBuilder",
"store_backend": {
"class_name": "TupleS3StoreBackend",
"bucket": "my_data_docs_bucket",
"prefix": "my_optional_data_docs_prefix",
},
"site_index_builder": {
"class_name": "DefaultSiteIndexBuilder",
"show_cta_footer": True,
},
}
},
validation_operators={
"action_list_operator": {
"class_name": "ActionListValidationOperator",
"action_list": [
{
"name": "store_validation_result",
"action": {"class_name": "StoreValidationResultAction"},
},
{
"name": "store_evaluation_params",
"action": {"class_name": "StoreEvaluationParametersAction"},
},
{
"name": "update_data_docs",
"action": {"class_name": "UpdateDataDocsAction"},
},
],
}
},
anonymous_usage_statistics={
"enabled": True
}
)
2. Pass this DataContextConfig as a project_config to BaseDataContext
import great_expectations as gx
context = gx.get_context(project_config=data_context_config)
3. Use this BaseDataContext instance as your DataContext
If you are using Airflow, you may wish to pass this Data Context to your GreatExpectationsOperator as a parameter. See the following guide for more details: